Get started with TimeGPT’s historical anomaly detection capabilities.
unique_id | ds | y | |
---|---|---|---|
0 | 0 | 2007-12-10 | 9.590761 |
1 | 0 | 2007-12-11 | 8.519590 |
2 | 0 | 2007-12-12 | 8.183677 |
3 | 0 | 2007-12-13 | 8.072467 |
4 | 0 | 2007-12-14 | 7.893572 |
Figure 1. Peyton Manning Wikipedia page visits over time.
unique_id | ds | y | TimeGPT | TimeGPT-hi-99 | TimeGPT-lo-99 | anomaly | |
---|---|---|---|---|---|---|---|
0 | 0 | 2008-01-10 | 8.281724 | 8.224187 | 9.503586 | 6.944788 | False |
1 | 0 | 2008-01-11 | 8.292799 | 8.151533 | 9.430932 | 6.872135 | False |
2 | 0 | 2008-01-12 | 8.199189 | 8.127243 | 9.406642 | 6.847845 | False |
3 | 0 | 2008-01-13 | 9.996522 | 8.917259 | 10.196658 | 7.637861 | False |
4 | 0 | 2008-01-14 | 10.127071 | 9.002326 | 10.281725 | 7.722928 | False |
False
anomaly value indicates a normal data point; True
identifies an outlier.
Figure 2. Anomalies detected in the Peyton Manning dataset.