Advanced techniques to enhance TimeGPT forecast accuracy for energy and electricity.
NixtlaClient
object with your API key.
Steps | Description | MAE | MAE Improvement (%) | RMSE | RMSE Improvement (%) |
---|---|---|---|---|---|
0 | Zero-Shot TimeGPT | 18.5 | N/A | 20.0 | N/A |
1 | Add Fine-Tuning Steps | 11.5 | 38% | 12.6 | 37% |
2 | Adjust Fine-Tuning Loss | 9.6 | 48% | 11.0 | 45% |
3 | Fine-tune More Parameters | 9.0 | 51% | 11.3 | 44% |
4 | Add Exogenous Variables | 4.6 | 75% | 6.4 | 68% |
5 | Switch to Long-Horizon Model | 6.4 | 65% | 7.7 | 62% |
unique_id == "DE"
). The final two days (48
data points) form the test set.
Dataset Load Output
Hourly electricity price for Germany (training period highlighted).
Forecasting Log Output
unique_id | metric | TimeGPT |
---|---|---|
DE | mae | 18.519 |
DE | rmse | 20.038 |
Zero-shot TimeGPT Forecast
Add 30 Fine-tuning Steps
unique_id | metric | TimeGPT |
---|---|---|
DE | mae | 11.458 |
DE | rmse | 12.643 |
MAE
, MSE
) can yield better results for specific use cases.
Fine-tune with MAE loss function
unique_id | metric | TimeGPT |
---|---|---|
DE | mae | 9.641 |
DE | rmse | 10.956 |
Fine-tune with depth of 2
unique_id | metric | TimeGPT |
---|---|---|
DE | mae | 9.002 |
DE | rmse | 11.348 |
Add exogenous variables
unique_id | metric | TimeGPT |
---|---|---|
DE | mae | 4.603 |
DE | rmse | 6.359 |
timegpt-1-long-horizon
.
Use a Long-Horizon Model
unique_id | metric | TimeGPT |
---|---|---|
DE | mae | 6.366 |
DE | rmse | 7.738 |
Steps | Description | MAE | MAE Improvement (%) | RMSE | RMSE Improvement (%) |
---|---|---|---|---|---|
0 | Zero-Shot TimeGPT | 18.5 | N/A | 20.0 | N/A |
1 | Add Fine-Tuning Steps | 11.5 | 38% | 12.6 | 37% |
2 | Adjust Fine-Tuning Loss | 9.6 | 48% | 11.0 | 45% |
3 | Fine-tune More Parameters | 9.0 | 51% | 11.3 | 44% |
4 | Add Exogenous Variables | 4.6 | 75% | 6.4 | 68% |
5 | Switch to Long-Horizon Model | 6.4 | 65% | 7.7 | 62% |